SUPERVISED NEIGHBOURHOOD TOPOLOGY LEARNING (SNTL) FOR HUMAN ACTION RECOGNITION

- o ¹J.H. Ma, ¹P.C. Yuen, ¹W.W. Zou, ²J.H. Lai
- ¹Hong Kong Baptist University
- o ²Sun Yat-sen University
- ICCV workshop on Machine Learning for Vision-based Motion Analysis (MLVMA09)

OUTLINE

- Introduction
- Problems
- Supervised Neighborhood Topology Learning (SNTL)
- Experiments and Analysis
- Conclusion

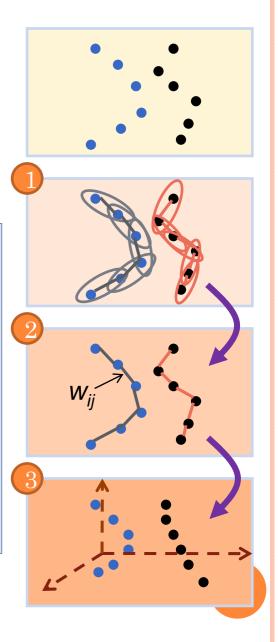
INTRODUCTION

INTRODUCTION

- Applications of Human Action Recognition
 - intelligent video surveillance
 - perceptual interface
 - content-based video retrieval
 - etc
- Existing Methods for Human Action Recognition
 - Flow based [AA Efros et al., ICCV 2003]
 - Template based [L. Gorelick et al., PAMI 2007]
 - Interest points based [J. Niebles et al., IJCV 2008]
 - Trajectory based [R. Messing et al., ICCV, 2009]
 - Manifold learning-based [Wang et al., TIP, 2007]
 - Etc
- Manifold learning-based methods (LPP and SLPP) achieved great success

LPP AND SLPP

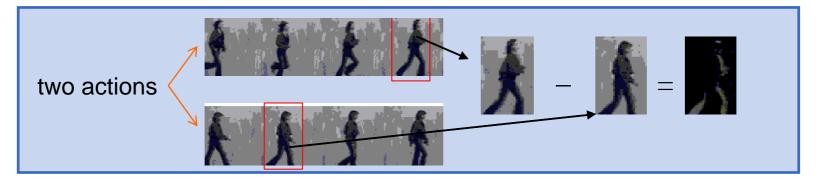
- Framework of LPP and SLPP
 - 1. Constructing the adjacency graph
 - \circ ε -neighborhood, KNN, or supervised
 - 2. Choosing the weights
 - Simple-minded or heat kernel
 - 3. Eigenmaps
 - Solve the optimization problem → projection matrix



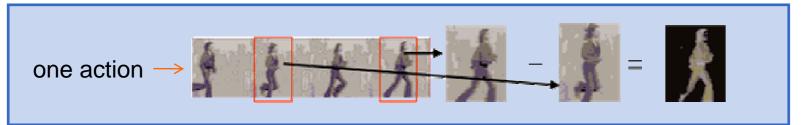
PROBLEMS

CHARACTERISTIC OF HUMAN ACTIONS

similar pose in two different actions

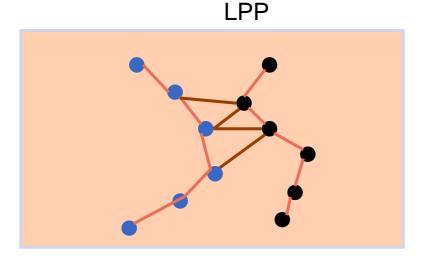


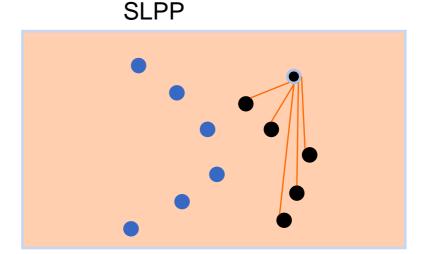
o dissimilar pose in the same action



PROBLEMS IN LPP AND SLPP

 adjacency graphs play an important role in LPP and SLPP

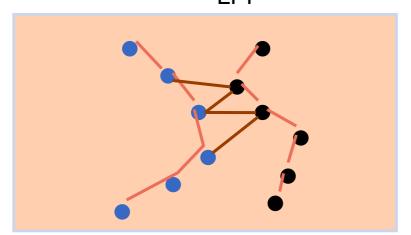


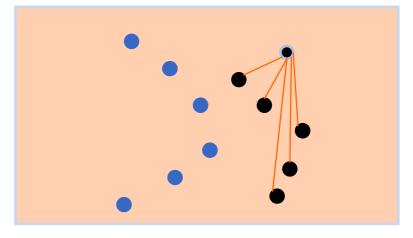


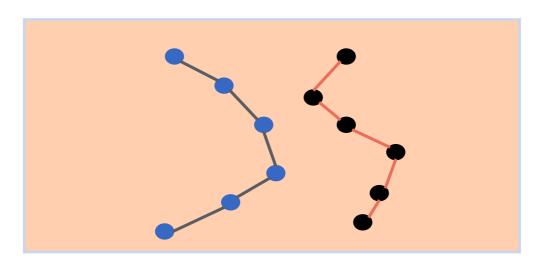
- o in adjacency graph construction:
 - LPP only considers the local information
 - SLPP only considers the class information

PROPOSED METHOD

Reasonable adjacency graph







THE TOPOLOGY IN LPP AND SLPP

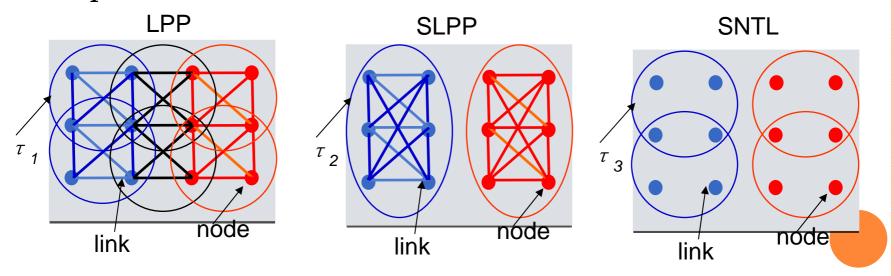
- the adjacency graph corresponding to a topology
- Data points with different topologies are considered to be different manifolds.
- denote: LPP $\rightarrow \tau_1$, and SLPP $\rightarrow \tau_2$.
 - τ_1 : topology induced by Euclidean, consider Euclidean distance \leftarrow \rightarrow data close together are in the same neighborhood
 - τ₂: topology induced by label information, consider class distance ← → data point from same action are in the same neighborhood

two class problem $\rightarrow \tau_2 = \{\emptyset, S_1, S_2, S\}$

- integrate these two together?
- \circ restrict the τ_1 on τ_2 or τ_2 on τ_1

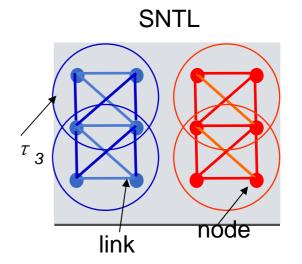
A NEW TOPOLOGY

- \circ proposed method: define a new topology τ_3 , so that make use of class label information and the local information
- a subset is open in τ_3 iff it is the intersection of action data set S_i with an open set in the Euclidean space.



ADVANTAGE OF NEW TOPOLOGY

- Keep the local information
 - temporal information
 - more suitable for manifold learning
- Keep the label information
 - recognition perspective
 - preserve the discriminative features



• make use of our new topology, and adopt the framework of LPP, we propose Supervised Neighborhood Topology Learning (SNTL)

ALGORITHMIC PROCEDURE

Proposed Neighborhood Topology Manifold Learning:

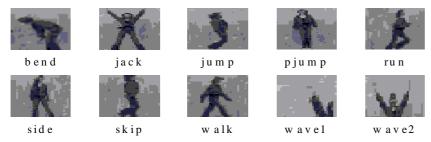
- **1. Computing KNN parameter** k_i for class i. Choosing a percentage parameter a, 0 < a < 1, let $k_i = aN_i$, where N_i denotes the sample number of class i.
- **2. Putting edges on the graph.** An edge will be put between nodes t and s, if x_t and x_s belong to the same class i, and x_t is among the k_i nearest neighbors of x_s or x_s is among the k_i nearest neighbors of x_t .
- **3. Eigenmaps.** Optimize the cost function by EVD.

EXPERIMENTS

EXPERIMENT SETTING

Database	person num	action num	training	testing
Weizmann	9	10	8 persons	1 person

- o leave-one-out rule
- example frames of different actions



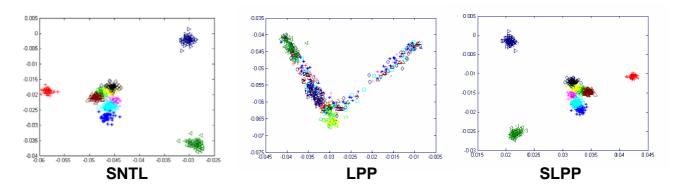
• Classifier: nearest neighbor framework with median Hausdorff distance

$$d(A_i, A_j) = S(A_i, A_j) + S(A_j, A_i),$$

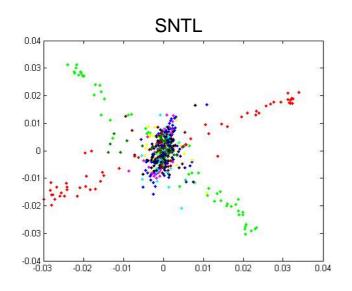
$$S(A_i, A_j) = \operatorname{median}_{k} (\min_{l} (\|A_i(k) - A_j(l)\|))$$

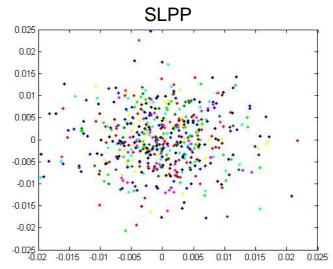
COMPARATIVE EXPERIMENTS 1

• 2D embeddings of training data by SNTL, LPP and SLPP

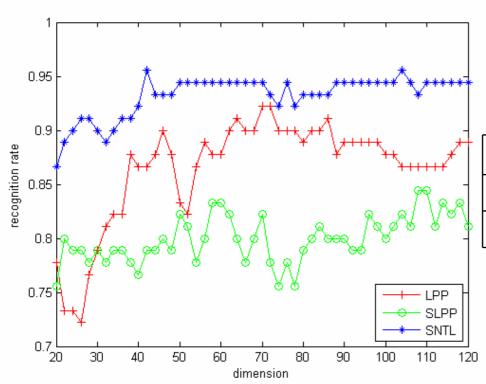


o 2D embeddings of testing data by SNTL, and SLPP





COMPARATIVE EXPERIMENTS 2



Recognition rate

method	LPP	SLPP	SNTL
Recognition rate (%)	92.22	84.84	95.56
Optimal dimension	70	108	42

CONCLUSION

CONCLUSIONS

- Propose a new supervised manifold learning method,
 - namely supervised neighborhood topology learning (SNTL)
 - for recognition perspective

Advantages

- preserves discriminative features
- preserves temporal information of each action contained in local structure

Disadvantages

- Do not take full advantage of temporal information
- Parameter is empirically determined

Thank you

Q & A?

